

Atoms or ions are held together in molecules or compounds by chemical bonds.

•The type and number of electrons in the outer electronic shells of atoms or ions are instrumental in how atoms react with each other to form stable chemical bonds.

•Over the last 150 years scientists developed several theories to explain why and how elements combine with each other.

Bonding in Chemistry

- Central theme in chemistry: Why and How atoms attach together
- This will help us understand how to:
 - 1. Predict the shapes of molecules.
 - 2. Predict properties of substances.
 - 3. Design and build molecules with particular sets of chemical and physical properties.

Chemical Bonds

Two of the most common substance on our dining table are salt and granulated sugar

NaCl

 $C_{12}H_{22}O_{11}$

The properties of substances are determined in large part by the chemical bonds that hold their atoms together

Chemical Bonds

All chemical reactions involve breaking of some bonds and formation of new ones which yield new products with different properties.

Binary Ionic Compounds

Naming Compounds

- Binary Compounds
 - Composed of two elements
 - Ionic and covalent compounds included
- Binary Ionic Compounds
 - Metal—nonmetal NaCl and CaCl₂.
- Binary Covalent Compounds
- Nonmetal—nonmetal such as H_2O and CO_2

- Binary ionic compounds contain positive cations and negative anions.
 - Type I compounds
 - Metal present forms only one cation.
 - Type II compounds
 - Metal present can form 2 or more cations with different charges.

Type I Compounds

Metals (Groups I, II, and III) and Non-Metals Metal <u>Sodium</u> + Non-Metal <u>Chlorine</u> ide Sodium Chloride NaCl

Metal <u>Calcium</u> + Non-Metal <u>Bromide</u> ide Calcium Bromide CaBr₂

Metal <u>Aluminun</u> + Non-Metal <u>Oxide</u> ide Aluminum Oxide Al_2O_3

Binary Ionic Compounds (Type II) with Transition Metals

- Metals in these compounds can form more than one type of positive charge.
- Charge on the metal ion must be specified.
- Roman numeral indicates the charge of the metal cation.
- Transition metal cations usually require a Roman numeral.

Type II Compounds

Metals (Transition Metals) and Non-Metals Metal <u>Iron</u> +Roman Numeral (<u>III</u>) + Non-Metal <u>Bromine</u> ide Iron (III) Bromide FeBr₃ Compare with Iron (II) Bromide FeBr₂ **Metals (Transition Metals) and Non-Metals Older System** Metal (Latin) <u>Ferrous</u> + ous or ic + Non-Metal <u>Bromine</u> ide Ferrous Bromide FeBr₂ Compare with Ferric Bromide FeBr₃

Common Type II Cations

Table 5.2	Common Type II Cations		
lon	Systematic Name	Older Name	
Fe ³⁺	iron(III)	ferric	
Fe ²⁺	iron(II)	ferrous	
Cu ²⁺	copper(II)	cupric	
Cu ⁺	copper(I)	cuprous	
Co ³⁺	cobalt(III)	cobaltic	
Co^{2+}	cobalt(II)	cobaltous	
Sn ⁴⁺	tin(IV)	stannic	
Sn ²⁺	tin(II)	stannous	
Pb ⁴⁺	lead(IV)	plumbic	
Pb^{2+}	lead(II)	plumbous	
Hg ²⁺	mercury(II)	mercuric	
Hg_2^{2+*}	mercury(I)	mercurous	

*Mercury(I) ions always occur bound together in pairs to form $Hg_2^{2^+}$.

Rules for Naming Type II Ionic Compounds

- 1. The cation is always named first and the anion second.
- Because the cation can assume more than one charge, the charge is specified by a Roman numeral in parentheses.

$$\begin{array}{c} 2(3+) + 3(2-) = & 0 \\ \uparrow & \uparrow & \uparrow \\ Fe^{3+} & 0^{2-} & \text{Net charge} \end{array}$$

Compound	Ions Present	Ion Names	Comments
Cation	Fe ³⁺	iron(III)	Iron is a transition
			metal and requires
Fe ₂ O ₃			a III to specify the
Anion	×-		charge on the
	O^{2-}	oxide	cation.

Binary Ionic Compounds (Type II)

• Examples:

CuBr Copper(I) bromide

FeS Iron(II) sulfide

PbO₂ Lead(IV) oxide

Common Type I cations

Common Type II cations

Common monatomic anions

Properties of Ionic Compounds

- Crystalline structure.
- A regular repeating arrangement of ions in the solid.
- Ions are strongly bonded.
- Structure is rigid.
- High melting points- because of strong forces between ions.

Covalent Compounds

Covalent Compounds

Two nonmetals share electrons so both have 8 valence electrons. Exception: H Neither takes on a charge - no valence. Do not crisscross to determine formula. Must use prefixes in the name. Name tells you the formula. Example: N_2O_4 is di nitrogen tetroxide.

Polyatomic Ions

Polyatomic Ions

- A **polyatomic ion** is a group of atoms with an overall ionic charge.
- NH_4^+ ammonium OH^- hydroxide NO_3^- nitrate NO_2^- nitrite
- CO_3^{2-} carbonate PO_4^{3-} phosphate HCO_3^{-} hydrogen carbonate (or bicarbonate)

Naming Polyatomic Ions

- The names of the common polyatomic anions end in *ate.*
 - NO_3^- nitrate PO_4^{3-} phosphate
- with one oxygen less end in *ite*.
 NO₂⁻ nitrite PO₃³⁻ phosphite
 with hydrogen use prefix hydrogen (or bi)
 - HCO_3^- hydrogen carbonate (bicarbonate) HSO_3^- hydrogen sulfite (bisulfite)

Names and Formulas of Common Polyatomic Ions

TABLE 6.7 Names and Formulas of Some Common Polyatomic Ions

Nonmetal	Formula of Ion*	Name of Ion
Hydrogen	OH-	Hydroxide
Nitrogen	NH_4^+	Ammonium
	NO_3^-	Nitrate
	NO_2^-	Nitrite
Chlorine	ClO_4^-	Perchlorate
	ClO ₃ ⁻	Chlorate
	ClO_2^-	Chlorite
	ClO ⁻	Hypochlorite
Carbon	CO ₃ ²⁻	Carbonate
	HCO ₃ ⁻	Hydrogen carbonate (or bicarbonate)
	CN^{-}	Cyanide
	$C_2H_3O_2^-$	Acetate
	SCN ⁻	Thiocyanate

Names and Formulas of Common Polyatomic Ions

TABLE 6.7 Names and Formulas of Some Common Polyatomic Ions				
Nonmetal	Formula of Ion*	Name of Ion		
Sulfur	SO_4^{2-}	Sulfate		
	HSO_4^-	Hydrogen sulfate (or bisulfate)		
	SO_3^{2-}	Sulfite		
	HSO_3^-	Hydrogen sulfite (or bisulfite)		
Phosphorus	PO ₄ ³⁻	Phosphate		
	HPO_4^{2-}	Hydrogen phosphate		
	$H_2PO_4^-$	Dihydrogen phosphate		
	PO ₃ ³⁻	Phosphite		
Chromium	CrO ₄ ²⁻	Chromate		
	$\operatorname{Cr_2O_7}^{2-}$	Dichromate		
Manganese	MnO_4^-	Permanganate		

*Formulas and names in bold show the most common polyatomic ion for that element.

Writing Formulas for Compounds with Polyatomic Ions

To write the correct formula for compounds containing polyatomic ions, first determine the ratio of ions using charge balance.

Write the formula for calcium nitrate.

1. The total negative and positive charges must equal zero

Ca²⁺
$$\begin{cases} NO_3^-\\ NO_3^- \end{cases}$$

 $1(2+) + 2(1-) = 0$
Subscript for the polyatomic ior

Writing Formulas for Compounds with Polyatomic Ions

2. When more than one polyatomic ion is needed for charge balance, the subscript is written outside the closing parenthesis of the polyatomic ion.

$$Ca^{2+} + 2NO_3^- \rightarrow Ca(NO_3)_2$$

Calcium ion + 2 Nitrate ions Calcium nitrate

Types of Chemical Bonds

Covalent bonds

• Metallic bonds

Ionic Bond

IONIC BOND

bond formed between two ions by the *transfer* of electrons

Ionic bonding

Ionic substances are formed when an atom that loses electrons relatively easily react with an atom that has a high affinity for electrons.

ex. metal-nonmetal compound

Chemical Bonds

Ionic bonds are formed by the attraction of oppositely charged ions.

Ionic bonding

- Between atoms of metals and nonmetals with very different electronegativity
- Bond formed by transfer of electrons
- Produce charged ions all states. Conductors and have high melting point.
- ✤ When an atom of a nonmetal takes one or more electrons from an atom of a metal so both atoms end up with eight valence electrons.
- ✤ Examples; NaCl, CaCl₂, K₂O

Ionic Bonds

- Metal loses electrons to form cation.
- Nonmetal gains electrons to form anion.
- The electronegativity between the metal and the nonmetal must be > than 2.
- \bullet Ionic bond results from + to attraction.
- Lewis theory allows us to predict the correct formulas of ionic compounds.
- A metal cation and nonmetal anion are joined together by an ionic bond called <u>SALT</u>

In an **IONIC** bond, electrons are lost or gained, resulting in the formation of **IONS** in ionic compounds.

K + :F:

The compound potassium fluoride consists of potassium (K⁺) ions and fluoride (F⁻) ions

The ionic **bond** is the attraction between the positive K⁺ ion and the negative F⁻ ion

Ionic bond – electron from Na is transferred to Cl, this causes a charge imbalance in each atom. The Na becomes (Na⁺) and the Cl becomes (Cl⁻), charged particles or ions.

Covalent Bond

COVALENT BOND

bond formed by the *sharing* of electrons

Covalent Bonding

When an atom of one nonmetal shares one or more electrons with an atom of another nonmetal so both atoms end up with eight valence electrons.

Chemical Bonds

Covalent bonds form when atoms share 2 or more valence electrons.

Covalent bond strength depends on the number of electron pairs shared by the atoms.

singledoubletriplebondbondbond

Covalent Bond

Between nonmetallic elements of similar electronegativity.
Formed by sharing electron pairs
Lower Melting Points than Ionic Compounds
Examples; O₂, CO₂, C₂H₆, H₂O, SiC

Covalent Bonds

- Often found between two nonmetals.
- Typical of molecular species.
- Atoms share pairs of electrons to attain octets.
- Molecules generally weakly attracted to each other.
 - Observed physical properties of molecular substance due to these attractions.
- A group of atoms joined together by a covalent bond is called <u>a Molecule</u>

The Covalent Bonding

- Shared electrons are attracted to the nuclei of both atoms.
- They move back and forth between the outer energy levels of each atom in the covalent bond.
- So, each atom has a stable outer energy level some of the time.

Covalent Bonding

Electron are shared by nuclei

The formation of a bond between two atoms.

Examples of Convalent Bond

The neutral particle is formed when atoms share electrons is called a molecule

Single Covalent Bonds

Two atoms share one pair of electrons.

✤ 2 electrons.

One atom may have more than one single bond.

Double Covalent Bond

- Two atoms sharing two pairs of electrons.
 4 electrons.
- Shorter and stronger than single bond.

Chemical Bonds

Chlorine forms CI₂ a covalent bond with itself

:Cl • Cl:

Each chlorine atom wants to gain one electron to achieve an octet

:<u>Cl</u>· ·<u>Cl</u>:

Neither atom will give up an electron – chlorine is highly electronegative. What's the solution – what can they do to achieve an octet?

octet

circle the electrons for each atom that completes their octets

The octet is achieved by each atom sharing the electron pair in the middle

The octet is achieved by each atom sharing the electron pair in the middle

CIOCI: This is the bonding pair

It is called a **SINGLE BOND**

C1-C1

Single bonds are abbreviated with a dash

Cl-Cl This is the chlorine molecule,

 Cl_2

Oxygen is also one of the diatomic molecules

How will two oxygen atoms bond?

Each atom has two unpaired electrons

Oxygen atoms are highly electronegative. So both atoms want to gain two electrons.

:**O**··**O**:

Both electron pairs are shared.

6 valence electrons plus 2 shared electrons = full octet

6 valence electrons plus 2 shared electrons = full octet

two bonding pairs, making a *double bond*

$: \bigcirc : : \bigcirc : \rightarrow \bigcirc = \bigcirc$

For convenience, the double bond can be shown as two dashes.

Ionic versus Covalent

	IONIC	COVALENT
Bonded Name	Salt	Molecule
Bonding Type	Transfer e ⁻	Share e⁻
Types of Elements	Metal & Nonmetal	Nonmetals
Physical State	Solid	Solid, Liquid, or Gas
Melting Point	High (above 300°C)	Low (below 300 °C)
Solubility	Dissolves in Water	Varies
Conductivity	Good	Poor

METALLIC BOND

bond found in metals; holds metal atoms together very strongly

Metallic Bond

- Formed between atoms of metallic elements
- Electron cloud around atoms
- Good conductors at all states, lustrous, very high melting points
- Examples; Na, Fe, Al, Au, Co

Ionic Bond, A Sea of Electrons

