

1-THE ARRHENIUS THEORY

- Arrhenius acid: Any substance that, when dissolved in water, increases the concentration of hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$
$\mathrm{HCl}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q) \quad$ Acid

Svante Arrhenius

* Arrhenius base: Any substance that, when dissolved in water, increases the concentration of hydroxide ion $\left(\mathrm{OH}^{-}\right)$
$\mathrm{NaOH}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad$ Base

Hydronium Ion

Unknown to Arrhenius free \mathbf{H}^{+}ions do not exist in water. They covalently react with water to produce hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$.

$$
\begin{aligned}
\mathrm{H}^{+}+: \ddot{\mathrm{O}}-\mathrm{H} & \longrightarrow \\
\mathrm{H} & {\left[\begin{array}{c}
\mathrm{H}-\stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{H} \\
\mathrm{H}
\end{array}\right]^{+} } \\
& \text {new bond }
\end{aligned}
$$

or:

$$
\mathrm{H}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

This new bond is called a coordinate covalent bond since both new bonding electrons come from the same atom

2-THE BRONSTED-LOERY THEORY

An acid: is a hydrogen containing species that donates a proton.
$\mathrm{HClO}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrows \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{ClO}_{(\mathrm{aq})}^{-}$Bronsted Lowry

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}
$$

A base: is any substance that accepts a proton"
$\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrows \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}$

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

Brønsted-Lowry Theory of Acids \& Bases

Acid:
 H^{+}source

Base:
H^{+}remover
${ }^{\ominus}{ }^{2} \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$

Bronsted-Lowry Theory of Acids \& Bases

Base:
 H^{+}remover

Acid: H^{+}source

Notice that water is both an acid \& a base = amphoteric

NHE + Hi
Reversible reaction

3-THE Lewis THEORY

Lewis acid: An electron acceptor \&ewis bases: An electron donor

$$
\begin{array}{cc}
H & F \\
I \\
H-N! \\
I & \text { I } \\
H & F
\end{array}
$$

Lewis acids are electrophils: $\mathrm{H}^{+}, \mathrm{Na}^{+}, \mathrm{BF}_{3}$,
Lewis bases are nucleophils: $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$

Lewis bases Lewis acid

Autoionization of Water

- Auto-ionization of water:

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C}
\end{aligned}
$$

Water ionizes to produce both $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}, thus it has both acid and base properties. K_{w} is called water ionization constant.

- Pure water at $25^{\circ} \mathrm{C}:\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$

Autoionization of Water

- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad\left(\right.$ note: $\left.\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- $\mathrm{p} K_{W}=-\log \left(K_{w}\right) ; \mathrm{p} K_{a}=-\log \left(K_{a}\right) ; \mathrm{p} K_{b}=-\log \left(K_{b}\right)$
- For water, $K_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
- $-\log \left(K_{w}\right)=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left(-\log \left[\mathrm{OH}^{-}\right]\right)$
- $\mathrm{p} K_{W}=\mathrm{pH}+\mathrm{pOH}=14.00$
- At $25^{\circ} \mathrm{C}, \mathrm{pOH}=14-\mathrm{pH}$

Autoionization of Water

Acidic solutions:

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7} \mathrm{M} ;} \\
& \mathrm{pH}<7 ;
\end{aligned}
$$

Basic solutions:
$\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M}$ or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1.0 \times 10^{-7} \mathrm{M}$ $\mathrm{pH}>7$;
Neutral solutions:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M} ; \mathrm{pH}=7.00
$$

Relationship between acidity of solution and pH
increasing concentration of hydrogen ions
decreasing concentration of hydrogen ions

strong acid

weak acid

water

Autoionization of Water

The value of this constant in pure water at $25^{\circ} \mathrm{C}$ as $1 \mathrm{X} 10^{-14}$. In pure water. which is denoted as a neutral solution,
 will have a $[\mathrm{H}+]$ greater than 1×10^{-7}, and a $\left[\mathrm{OH}^{\prime \prime}\right]$ less than 1×10^{-7}. The opposite is true in a basic solution.
We define an aqueous solution as being neutral when the $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$.

We define an aqueous solution as being acidic when
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$.
We define an aqueous solution as being basic when $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$.

Autoionization of Water

ACIDS AND BASES: STRONG VERSUS WEAK

Strong acids. There are two types of strong acids:

1. The hydrohalic acids $\mathrm{HCl}, \mathrm{HBr}$, and HI
2. Oxoacids in which the number of O atoms exceeds the number of ionizable H atoms by two or more, such as $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}$

Weak acids. There are many more weak acids than strong ones. Four types, with examples, are:

1. The hydrohalic acid HF
2. Those acids in which H is bounded to O or to halogen, such as HCN and $\mathrm{H}_{2} \mathrm{~S}$
3. Oxoacids in which the number of O atoms equals or exceeds by one the number of ionizable H atoms, such as $\mathrm{HClO}, \mathrm{HNO}_{2}$, and $\mathrm{H}_{3} \mathrm{PO}_{4}$
4. Organic acids (general formula RCOOH), such as $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$

ACIDS AND BASES: STRONG VERSUS WEAK

Strong bases. Soluble compounds containing O^{2-} or OH^{-}ions are strong bases. The cations are usually those of the most active metals:

1) $\mathrm{M}_{2} \mathrm{O}$ or MOH , where $\mathrm{M}=$ Group $1 \mathrm{~A}(1)$ metals ($\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$)
2) MO or $\mathrm{M}(\mathrm{OH})_{2}$, where $\mathrm{M}=$ Group $2 \mathrm{~A}(2)$ metals $(\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ [MgO and $\mathrm{Mg}(\mathrm{OH})_{2}$ are only slightly soluble, but the soluble portion dissociates completely.]

Weak bases. Many compounds with an electron-rich nitrogen are weak bases (none are Arrhenius bases). The common structural feature is an N atom that has a lone electron pair in its Lewis structure.

1) Ammonia (: NH_{3})
2) Amines (general formula $\mathrm{RNH}_{2}, \mathrm{R}_{2} \mathrm{NH}, \mathrm{R}_{3} \mathrm{~N}$), such as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{3} \mathrm{~N}$, and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$

Calculate the $\mathbf{p H}$ of a $1.00 \mathrm{M} \mathrm{HNO}_{2}$ Solution

Problem: Calculate the $\mathbf{p H}$ of a 1.00 M Solution of Nitrous acid HNO_{2}.
Solution:
$\mathrm{HNO}_{2(\mathrm{aq})} \rightleftarrows \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{NO}_{2(\mathrm{aq})}^{-} \quad \mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-4}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=4.0 \times 10^{-4}=\frac{(\mathrm{x})(\mathrm{x})}{1.00-\mathrm{x}}$
Assume $1.00-x=1.00$ to simplify the problem.

$$
\begin{aligned}
& \frac{\mathrm{x}^{2}}{1.00}=4.0 \times 10^{-4} \quad \text { or } \mathrm{x}^{2}=4.0 \times 10^{-4} \\
& \mathrm{x}=2.0 \times 10^{-2}=\mathbf{0 . 0 2} \mathrm{M}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{NO}_{2}^{-}\right] \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.0 \times 10^{-2}\right)=2.00
\end{aligned}
$$

Calculate the pH of a $2.0 \times 10^{-3} \mathrm{M}$ solution of NaOH .

Since NaOH is a strong base, it will dissociate 100% in water.

$$
\mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

Since $[\mathrm{NaOH}]=2.0 \times 10^{-3} \mathrm{M},\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-3} \mathrm{M}$ The concentration of $\left[\mathrm{H}^{+}\right]$can be calculated from K_{w} :

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{[\mathrm{OH}]}=\frac{1.0 \times 10^{-14}}{2.0 \times 10^{-3}}=5.0 \times 10^{-12} \mathrm{M} } \\
& \mathbf{p H}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(5.0 \times 10^{-12}\right)=12.00
\end{aligned}
$$

Problem: Ammonia is commonly used cleaning agent in households and is a weak base, with a K_{b} of 1.8×10^{-5}. What is the pH of a $1.5 \mathrm{MNH}_{3}$ solution?

Plan: Ammonia reacts with water to form $\left[\mathrm{OH}^{-}\right]$and then calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and the pH . The balanced equation and K_{b} expression are:

$$
\begin{aligned}
& \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \\
& K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
\end{aligned}
$$

Concentration (M) $\begin{array}{lllll}\mathrm{NH}_{3} & \mathrm{H}_{2} \mathrm{O} & \mathbf{N H}_{4}^{+} & \mathrm{OH}^{-}\end{array}$

Initial	1.5	----	0	0
Change	-x	---	+x	+x
Equilibrium	$1.5-\mathrm{x}$	---	x	x

making the assumption: since K_{b} is small: $\quad 1.5 \mathrm{M}-\mathrm{x}=1.5 \mathrm{M}$

Substituting into the K_{b} expression and solving for x:

$$
\begin{aligned}
K_{\mathrm{b}} & =\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{(\mathrm{x})(\mathrm{x})}{1.5}=1.8 \times 10^{-5} \\
\mathrm{x}^{2} & =2.7 \times 10^{-5}=27 \times 10^{-6} \\
\mathrm{x} & =5.20 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]=\left[\mathrm{NH}_{4}^{+}\right]
\end{aligned}
$$

Calculating pH :

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{5.20 \times 10^{-3}}=1.92 \times 10^{-12}} \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.92 \times 10^{-12}\right)=12.000 \\
\mathbf{p H}=
\end{gathered}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH of Strong Acids

Strong acids like HCl and HClO_{4} ionize completely in aqueous solution:

$$
\begin{aligned}
& \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
& \mathrm{HClO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}_{4}^{-}(\mathrm{aq})
\end{aligned}
$$

In solutions of strong monoprotic acids HA, such as HCl and HClO_{4},

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HA}]_{0}
$$

For example, in $0.10 \mathrm{M} \mathrm{HCl},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.10 \mathrm{M}$, and $\mathrm{pH}=-\log (0.10)=1.00$

［ OH^{-}］and pH of Strong Bases

Like strong acids，strong bases also ionize completely in aqueous solution．

贯 Examples： $\mathrm{NaOH}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)$ ；

$$
\mathrm{Ba}(\mathrm{OH})_{2(a q)} \rightarrow \mathrm{Ba}^{2+}{ }_{(a q)}+2 \mathrm{OH}^{-}(a q) ;
$$

睉 In a base solution such as 0.050 M NaOH ，

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]_{0}=0.050 \mathrm{M} ;} \\
& \mathrm{pOH}=-\log (0.050 \mathrm{M})=1.30 ; \mathrm{pH}=14.00-1.30= \\
& 12.70
\end{aligned}
$$

國 In a base solution such as $0.050 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ ，

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=2 \times\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]_{0}=0.10 \mathrm{M} ;} \\
& \mathrm{pOH}=-\log (0.10)=1.00 ; \quad \mathrm{pH}=14.00-1.00=13.00
\end{aligned}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH of Weak Acids

In weak acid solutions, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<[\mathrm{HA}]_{0}$;
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH can be calculated from the initial concentration of the acid and its K_{a} value.
nor Foxample, in $0.100 ~ M$ acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, with $K_{a}=1.8 \times 10^{-5},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH can be calculated using the "ICE" table.

ICE Table for Acetic Acid

部 Ionization: $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$

Initial [M]	0.100	0.00	0.00
Change [M]	$-X$	$+X$	$+X$
Equilm. $[\mathrm{M}]$	$(0.100-X)$	X	X

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{x^{2}}{(0.100-x)}=1.8 \times 10^{-5}
$$

Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from initial concentration

 and K_{a} by approximation method.Solving for x in the expression for K_{a} :

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]}=\frac{x^{2}}{(0.100-x)}=1.8 \times 10^{-5}
$$

$K_{a} \ll[\mathrm{HA}]_{0}\left(1.8 \times 10^{-5} \ll 0.100\right)=>x \ll 0.100$,
and $(0.10-x) \sim 0.10$. This makes $\frac{x^{2}}{(0.100-x)} \sim \frac{x^{2}}{0.100}=1.8 \times 10^{-5}$;
$x^{2}=(0.100)\left(1.8 \times 10^{-5}\right)=1.8 \times 10^{-6} ;$ and $x=\sqrt{1.8 \times 10^{-6}}=1.34 \times 10^{-3}$;
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x=1.34 \times 10^{-3} \mathrm{M} ; \mathrm{pH}=-\log \left(1.34 \times 10^{-3}\right)=2.873$

$\left[\mathrm{OH}^{-}\right]$and pH of a Weak Base

(In a weak base, $\left[\mathrm{OH}^{-}\right]$< $[\text {Base }]_{0}$;
[$\left.\mathrm{OH}^{-}\right]$and pH can be calculated from the initial concentration of the base and its K_{b} value.
(1) For example, in 0.100 M ammonia, NH_{3}, with K_{b}
$=1.8 \times 10^{-5},\left[\mathrm{OH}^{-}\right]$and pH can be calculated using the following "ICE" table.

ICE Table for the Ionization of Ammonia

Ionization: $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
Initial [M]
0.100
0.00
0.00
Change [M]
-X
$+x$
$+x$
Equilm. [M] (0.100 - x)
X
X

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{x^{2}}{(0.100-x)}=1.8 \times 10^{-5}
$$

Calculate $\left[\mathrm{OH}^{-}\right]$from initial concentration

 and K_{b} by approximation method.Solving for x in the expression for K_{b} :
$K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{x^{2}}{(0.100-x)}=1.8 \times 10^{-5}$
$K_{b} \ll[\mathrm{~B}]_{0}\left(1.8 \times 10^{-5} \ll 0.100\right) \Rightarrow x \ll 0.100$, and
$(0.100-x) \sim 0.100$, which makes $\frac{x^{2}}{(0.100-x)} \sim \frac{x^{2}}{0.100}=1.8 \times 10^{-5}$;
$x^{2}=(0.100)\left(1.8 \times 10^{-5}\right)=1.8 \times 10^{-6}$, which yields $x=1.34 \times 10^{-3}$;
$\left[\mathrm{OH}^{-}\right]=1.34 \times 10^{-3} \mathrm{M} \Rightarrow \mathrm{pOH}=2.873$, and $\mathrm{pH}=11.127$

Strong Acids:
HClO_{4}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
HI
HBr
HCl
HNO_{3}

Strong Bases:
LiOH NaOH KOH $\mathrm{Ca}(\mathrm{OH})_{2}$ $\mathrm{Sr}(\mathrm{OH})_{2}$ $\mathrm{Ba}(\mathrm{OH})_{2}$

Polyprotic Acids

- Polyprotic acids have more than one ionizable proton, such as $\mathrm{H}_{2} \mathrm{SO}_{3}$.
- These acids have acid-dissociation constants that decrease in magnitude in the order $K_{a 1}>K_{a 2}>K_{a 3}$.
- Because nearly all the $\mathrm{H}^{+}(\mathrm{aq})$ in a polyprotic solution comes from the first dissociation, the pH can usually be estimated using only K_{a}.

Polyprotic Acids

A polyprotic acid can donate more than one H^{+} Carbonic acid: $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$; dissolved CO_{2} in water Sulfuric acid: $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
Phosphoric acid: $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$

A polyprotic base: can accept more than one proton
Carbonate ion: $\mathrm{CO}_{3}{ }^{2-}$ (aq)
Sulfate ion: $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
Phophate ion: $\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$

Treat each step of protonation or deprotonation sequentially

Polyprotic Acids

$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 1}=4.3$ $\times 10^{-7}$
$\mathrm{HCO}_{3}^{-}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ $\mathrm{K}_{\mathrm{a} 2}=4.8$ $\times 10^{-11}$

Typically:

$$
K_{a 1} \gg K_{a 2} \gg K_{a 3} \gg \ldots
$$

Harder to loose a positively charged proton from a negatively charged ion, because of attraction between opposite charges.

Polyprotic Acids

TABLE 10.9 Acidity Constantrs of Polyprotic Acids

Acid	$K_{\text {al }}$	$\mathrm{p} K_{\mathrm{al}}$	K_{12}	$p K_{12}$	$K_{4}{ }^{\text {j }}$	$p K^{3}$
sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$	strong		1.2×10^{-2}	1.92		
oxalic acid, $(\mathrm{COOH})_{2}$	5.9×10^{-2}	1.23	6.5×10^{-5}	4.19		
sulfurous acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$	1.5×10^{-2}	1.81	1.2×10^{-7}	6.91		
phosphorous acid, $\mathrm{H}_{3} \mathrm{P} \mathrm{O}_{3}$	1.0×10^{-2}	2.00	2.6×10^{-7}	6.59		
phosphoric acid, $\mathrm{H}_{3} \mathrm{P} \mathrm{O}_{4}$	7.6×10^{-3}	2.12	6.2×10^{-8}	7.21	2.1×10^{-13}	12.68
tartaric acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{COOH})_{2}$	6.0×10^{-4}	3.22	1.5×10^{-5}	4.82		
carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	6.37	5.6×10^{-11}	10.25		
hydrosulfuric acid, $\mathrm{H}_{2} \mathrm{~S}$	1.3×10^{-7}	6.89	7.1×10^{-15}	14.15		

Calculate the pH of $0.010 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$.

Sulfuric acid is the only common polyprotic acid where the first deprotonation step is complete. The second deprotonation step is much weaker and adds slightly to the $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ concentration.

For the first step assume all $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ deprotonates $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$

From the first step $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=0.010 \mathrm{M}$

Second deprotonation
$\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \mathrm{K}_{\mathrm{a} 2}=0.012$

$\mathrm{HSO}_{4}^{-}(\mathrm{aq})$	$\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
0.010	0	0.010
-x	+x	$0.010+\mathrm{x}$
$0.010-\mathrm{x}$	x	$0.010+\mathrm{x}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a} 2} & =\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\right)\left(\left[\mathrm{SO}_{4}^{2-}(\mathrm{aq})\right]\right) /\left(\left[\mathrm{HSO}_{4}^{-}(\mathrm{aq})\right]\right. \\
0.012 & =(0.010+\mathrm{x})(\mathrm{x}) /(0.010-\mathrm{x})
\end{aligned}
$$

Solve the quadratic equation for $\mathrm{x} . \mathrm{K}_{\mathrm{a} 2}$ is large; cannot assume that $\mathrm{x} \ll 0.010$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=1.4 \times 10^{-2} \mathrm{M}} \\
& \mathrm{pH}=1.9
\end{aligned}
$$

Determine the pH of $0.20 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 1}=1.3 \times 10^{-7}$
$\mathrm{HS}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 2}=7.1 \times 10^{-15}$

- For the first deprotonation step determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ using equilibrium tables. $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=1.6 \mathrm{X} 10^{-4} \mathrm{M}$
Can assume that $\mathrm{x} \ll 0.20$ since $\mathrm{K}_{\mathrm{a} 1}$ is small

Second deprotonation constant is very small, so ignore addition of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ due to second step.
pH determined by first step alone. $\mathrm{pH}=3.8$

Polyprotic Acids

SALTS AND HYDROLYSIS

1. No hydrolysis: Salts of strong acids and strong bases are neutral in solution.

$$
\left(\mathrm{NaCl}, \mathrm{~K}_{2} \mathrm{SO}_{4}, \mathrm{CaCl}_{2} \ldots .\right)
$$

2. Anion-hydrolysis: Salts of weak acids and strong bases are basic in solution.

Dissolution: $\mathbf{K C N} \rightarrow \mathbf{K}^{+}+\mathbf{C N}^{-}$
Hydrolysis: $\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathbf{H C N}+\mathrm{OH}^{-}$

SALTS AND HYDROLYSIS

3. Cation-hydrolysis: Salts of strong acids and weak bases are acidic in solution.

Dissolution: $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$
Hydrolysis: $\mathrm{NH}_{4}{ }^{+}+\mathbf{H}_{\mathbf{2}} \mathrm{O} \Leftrightarrow \mathbf{N H}_{3}+\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}$
Cation-anion hydrolysis: Salts of weak acids and weak bases can be acidic, basic or neutral in solution, owing to the hydrolysis of both ions. The reaction depends on relative acid-base strengths.

Dissolution: $\mathrm{NH}_{4} \mathrm{CN} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{CN}^{-}$
Cation-Hydrolysis: $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{\mathbf{2}} \mathrm{O} \Leftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{\mathbf{3}} \mathrm{O}^{+}$
Anion-hydrolysis: $\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathbf{H C N}+\mathrm{OH}^{-}$

SALTS AND HYDROLYSIS

Salts are the ionic product of an acid base neutralization reaction.
Acidic Salts are formed from a strong acid and a weak base.
Neutral salts are formed from a strong acid and strong base.Basic salts are formed from a strong base and a weak acid.
Give the acid and base the following salts were formed from and label the salts as acidic, basic, or neutral.

1. NaCl
neutral salt
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
basic salt
2. $\mathrm{NH}_{4} \mathrm{Cl}$ acidic salt
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{HOH}$ s.a. s.b.
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \longrightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{HOH}$ w.a. s.b.
$\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{HOH}$
s.a.
w.b.

THANK YOU

