Acids, Bases and Salts م.م زينب يحيى كاظم

1-THE ARRHENIUS THEORY

Arrhenius acid: Any substance that, when dissolved in water, increases the concentration of hydronium ion (H₃O⁺)

HCl
$$(aq) \rightarrow H^+(aq) + Cl^-(aq)$$
 Acid

Arrhenius base: Any substance that, when dissolved in water, increases the concentration of hydroxide ion (OH⁻)

NaOH (aq) \rightarrow Na⁺ (aq) + OH⁻ (aq) **Base**

Svante Arrhenius

Hydronium Ion

Unknown to Arrhenius **free H**⁺ ions **do not** exist in water.

They **covalently** react with water to produce **hydronium ions**,

This new bond is called a **<u>coordinate covalent</u>** bond since both new bonding electrons come from the same atom

2-THE BRONSTED-LOERY THEORY

An acid: is a hydrogen containing species that donates a proton.

Lowry

 $HClO_{(aq)} + H_2O_{(l)} \leftrightarrows H_3O^+_{(aq)} + ClO^-_{(aq)} Bronsted$ $K_a = \frac{[H_3O^+][ClO^-]}{[HClO]}$

A base: is any substance that

accepts a proton"

 $NH_{3 (aq)} + H_{2}O_{(1)} \leftrightarrows NH_{4 (aq)} + OH_{(aq)}^{-}$ $K_{b} = \frac{[NH_{4}^{+}] [OH^{-}]}{[NH_{3}]}$

3-THE Lewis THEORY

Lewis acid: An electron acceptorLewis bases: An electron donor

Lewis

Lewis bases are nucleophils: NH₃, H₂O, PH₃

Lewis bases Lewis acid

• Auto-ionization of water:

 $2H_2O \rightarrow H_3O^+(aq) + OH^-(aq)$

 $K_W = [H_3O^+][OH^-] = 1.0 \text{ x } 10^{-14} \text{ at } 25^{\circ}\text{C}$

- Water ionizes to produce both H_3O^+ and OH^- , thus it has both acid and base properties. K_w is called *water ionization constant*.
- Pure water at 25°C: $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$

- $pH = -log[H^+]$ (<u>note</u>: $[H^+] = [H_3O^+]$)
- $pOH = -log[OH^-]$
- $pK_w = -\log(K_w)$; $pK_a = -\log(K_a)$; $pK_b = -\log(K_b)$
- For water, $K_W = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$
- $-\log(K_w) = -\log[H_3O^+] + (-\log[OH^-])$
- $pK_w = pH + pOH = 14.00$
- At 25° C, pOH = 14 pH

Acidic solutions: $[H_3O^+] > 1.0 \ge 10^{-7} M;$ pH < 7;Basic solutions: $[OH^-] > 1.0 \ge 10^{-7} M \text{ or } [H_3O^+] < 1.0 \ge 10^{-7} M$ pH > 7;Neutral solutions: $[H_3O^+] = [OH^-] = 1.0 \ge 10^{-7} M; \ pH = 7.00$

Relationship between acidity of solution and pH

The value of this constant in pure water at 25 °C as1 X 10 ⁻¹⁴. In pure water. which is denoted as a neutral solution, $[H+] = [OH-] = \sqrt{1.0x \ 10^{-14}} = 1 \ X \ 10^{-7}$. Therefore, an acidic solution will have a [H+] greater than 1 X 10 ⁻⁷, and a [OH''] less than 1 X 10 ⁻⁷. The opposite is true in a basic solution.

We define an <u>aqueous solution</u> as being <u>neutral</u> when the

 $[H^+] = [OH^-].$

We define an **aqueous solution** as being **acidic** when

 $[H^+] > [OH^-].$

We define an <u>aqueous solution</u> as being <u>basic</u> when $[U^{+}] < [OU^{-}]$

 $[H^+] < [OH^-].$

ACIDS AND BASES: STRONG VERSUS WEAK

Strong acids. There are two types of strong acids:

- 1. The hydrohalic acids HCl, HBr, and HI
- 2. Oxoacids in which the number of O atoms exceeds the number of ionizable H atoms by two or more, such as HNO₃, H₂SO₄, HClO₄

Weak acids. There are many more weak acids than strong ones. Four types, with examples, are:

- 1. The hydrohalic acid HF
- 2. Those acids in which H is bounded to O or to halogen, such as HCN and H_2S
- 3. Oxoacids in which the number of O atoms equals or exceeds by one the number of ionizable H atoms, such as HClO, HNO₂, and H₃PO₄
- 4. Organic acids (general formula RCOOH), such as CH_3COOH and C_6H_5COOH

ACIDS AND BASES: STRONG VERSUS WEAK

Strong bases. Soluble compounds containing O²⁻ or OH⁻ ions are strong bases. The cations are usually those of the most active metals:
1) M₂O or MOH, where M= Group 1A(1) metals (Li, Na, K, Rb, Cs)
2) MO or M(OH)₂, where M = Group 2A(2) metals (Ca, Sr, Ba) [MgO and Mg(OH)₂ are only slightly soluble, but the soluble portion dissociates completely.]

Weak bases. Many compounds with an electron-rich nitrogen are weak bases (none are Arrhenius bases). The common structural feature is an N atom that has a lone electron pair in its Lewis structure.

1) Ammonia (:NH₃)

2) Amines (general formula RNH₂, R₂NH, R₃N), such as CH₃CH₂NH₂, (CH₃)₂NH, (C₃H₇)₃N, and C₅H₅N

Calculate the pH of a 1.00 M HNO₂ Solution

Problem: Calculate the pH of a 1.00 M Solution of Nitrous acid HNO₂. **Solution:** HNO_{2 (aq)} \longrightarrow H⁺_(aq) + NO_{2 (aq)} K_a = 4.0 x 10⁻⁴ $K_a = \frac{[H^+] [NO_2^-]}{[HNO_2]} = 4.0 \times 10^{-4} = \frac{(x) (x)}{(x)}$ Assume 1.00 - x = 1.00 to simplify the problem. \mathbf{X}^2 $= 4.0 \text{ x } 10^{-4} \qquad \text{or} \quad \text{x}^2 = 4.0 \text{ x } 10^{-4}$ 1.00 $x = 2.0 \times 10^{-2} = 0.02 M = [H^+] = [NO_2^-]$ $pH = -log[H^+] = -log(2.0 \times 10^{-2}) = 2.00$

Calculate the pH of a 2.0 x 10⁻³ M solution of NaOH.

Since NaOH is a strong base, it will dissociate 100% in water.

$$NaOH_{(aq)} \longrightarrow Na^+_{(aq)} + OH^-_{(aq)}$$

Since [NaOH] = 2.0 x 10^{-3} M , [OH⁻] = 2.0 x 10^{-3} M The concentration of [H⁺] can be calculated from K_w:

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{2.0 \times 10^{-3}} = 5.0 \times 10^{-12} \text{ M}$$

 $pH = -\log [H^+] = -\log(5.0 \times 10^{-12}) = 12.00$

Problem: Ammonia is commonly used cleaning agent in households and is a weak base, with a $K_{\rm b}$ of 1.8 x 10⁻⁵. What is the pH of a 1.5 $M\rm NH_3$ solution?

Plan: Ammonia reacts with water to form [OH⁻] and then calculate $[H_3O^+]$ and the pH. The balanced equation and $K_{\rm b}$ expression are:

 $NH_{3(aq)} + H_2O_{(1)} \longrightarrow NH_{4(aq)} + OH_{(aq)}$ [NH₄⁺] [OH⁻] [NH₃] $K_{\rm b} = -$ TT **OII**

	1113	m ₂ O	19114	UII	
Initial	1.5		0	0	
Change	-X		$+_{\rm X}$	$+_{\rm X}$	
Equilibrium	1.5 - x		X	Х	

making the assumption: since $K_{\rm b}$ is small: 1.5 M - x = 1.5 M

$$K_{\rm b} = \frac{[\rm NH_4^{+}] [\rm OH^{-}]}{[\rm NH_3]} = \frac{(\rm x)(\rm x)}{1.5} = 1.8 \text{ x } 10^{-5}$$

$$x^2 = 2.7 \times 10^{-5} = 27 \times 10^{-6}$$

$$x = 5.20 x 10^{-3} = [OH^{-}] = [NH_4^{+}]$$

Calculating pH:

 $[H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{5.20 \times 10^{-3}} = 1.92 \times 10^{-12}$

 $pH = -log[H_3O^+] = -log(1.92 \times 10^{-12}) = 12.000$

[H₃O⁺] and pH of Strong Acids

Strong acids like HCl and HClO₄ ionize completely in aqueous solution:

 $HCl(aq) + H_2O \rightarrow H_3O^+(aq) + Cl^-(aq);$

 $HClO_4(aq) + H_2O \rightarrow H_3O^+(aq) + ClO_4^-(aq);$

In solutions of strong *monoprotic* acids HA, such as HCl and HClO₄,

 $[\mathrm{H}_{3}\mathrm{O}^{+}] = [\mathrm{H}\mathrm{A}]_{0}$

For example, in 0.10 M HCl, $[H_3O^+] = 0.10$ M, and pH = -log(0.10) = 1.00

[OH⁻] and pH of Strong Bases

Like strong acids, strong bases also ionize completely in aqueous solution.

Examples: NaOH(aq) \rightarrow Na⁺(aq) + OH⁻(aq);

Ba(OH)₂(*aq*) → Ba²⁺(*aq*) + 2 OH⁻(*aq*); In a base solution such as 0.050 M NaOH, $[OH^{-}] = [NaOH]_{0} = 0.050$ M;

pOH = -log(0.050 M) = 1.30; pH = 14.00 - 1.30 = 12.70

In a base solution such as $0.050 \text{ M Ba}(\text{OH})_2$, $[\text{OH}^-] = 2 \text{ x } [\text{Ba}(\text{OH})_2]_0 = 0.10 \text{ M};$ $p\text{OH} = -\log(0.10) = 1.00; \quad p\text{H} = 14.00 - 1.00 = 13.00$

[H₃O⁺] and pH of Weak Acids

In weak acid solutions, $[H_3O^+] < [HA]_0$;

[H_3O^+] and pH can be calculated from the initial concentration of the acid and its K_a value.

For example, in 0.100 *M* acetic acid, CH₃COOH, with $K_a = 1.8 \times 10^{-5}$, [H₃O⁺] and pH can be calculated using the "ICE" table.

創

ICE Table for Acetic Acid

Ionization: $CH_3CO_2H + H_2O \rightarrow H_3O^+ + CH_3CO_2^-$

Initial [M]	0.100	0.00	0.00	
Change [M]	-X	+X	+X	
🗊 Equilm. [M]	(0.100 - X)	X	X	

$$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{CH}_3\mathrm{CO}_2^-]}{[\mathrm{CH}_3\mathrm{COOH}]} = \frac{x^2}{(0.100 - x)} = 1.8 \times 10^{-5}$$

Calculating $[H_3O^+]$ from initial concentration and K_a by approximation method.

Solving for x in the expression for K_a :

$$K_{a} = \frac{[\text{H}_{3}\text{O}^{+}][\text{CH}_{3}\text{CO}_{2}^{-}]}{[\text{CH}_{3}\text{CO}_{2}\text{H}]} = \frac{x^{2}}{(0.100 - x)} = 1.8 \times 10^{-5}$$

$$K_{a} <<[\text{HA}]_{0} (1.8 \times 10^{-5} <<0.100) => x <<0.100,$$
and $(0.10 - x) \sim 0.10$. This makes $\frac{x^{2}}{(0.100 - x)} \sim \frac{x^{2}}{0.100} = 1.8 \times 10^{-5}$;

$$x^{2} = (0.100)(1.8 \times 10^{-5}) = 1.8 \times 10^{-6}; \text{ and } x = \sqrt{1.8 \times 10^{-6}} = 1.34 \times 10^{-3};$$

$$[\text{H}_{3}\text{O}^{+}] = x = 1.34 \times 10^{-3} \text{ M}; \quad \text{pH} = -\log(1.34 \times 10^{-3}) = 2.873$$

[OH⁻] and pH of a Weak Base

In a weak base, $[OH^-] < [Base]_0$;

[OH⁻] and pH can be calculated from the initial concentration of the base and its K_b value.

For example, in 0.100 *M* ammonia, NH₃, with K_b = 1.8 x 10⁻⁵, [OH⁻] and pH can be calculated using the following "ICE" table.

ICE Table for the Ionization of Ammonia

Ionization:	$NH_3 + H_2$	$_{2}O \rightarrow NH_{4}^{+} +$	OH-
I nitial [M]	0.100	0.00	0.00
Change [M]	- <i>X</i>	+X	+X
E quilm. [M]	(0.100 - x)	X	X
$K_b = \frac{[\mathrm{NH}_4^+]}{[\mathrm{NI}_4^+]}$	$\frac{[[OH^{-}]]}{[H_{3}]} = \frac{2}{(0.10)}$	$\frac{x^2}{10-x} = 1.8 \times 10^{-10}$	5

Calculate $[OH^-]$ from initial concentration and K_b by approximation method.

Solving for x in the expression for K_b :

$$K_{b} = \frac{[\mathrm{NH}_{4}^{+}][\mathrm{OH}^{-}]}{[\mathrm{NH}_{3}]} = \frac{x^{2}}{(0.100 - x)} = 1.8 \times 10^{-5}$$

$$K_{b} <<[\mathrm{B}]_{0} (1.8 \times 10^{-5} << 0.100) \Longrightarrow x << 0.100, \text{ and}$$

$$(0.100 - x) \sim 0.100, \text{ which makes} \frac{x^{2}}{(0.100 - x)} \sim \frac{x^{2}}{0.100} = 1.8 \times 10^{-5};$$

$$x^{2} = (0.100)(1.8 \times 10^{-5}) = 1.8 \times 10^{-6}, \text{ which yields } x = 1.34 \times 10^{-3};$$

$$[\mathrm{OH}^{-}] = 1.34 \times 10^{-3} \text{ M} \Longrightarrow \text{ pOH} = 2.873, \text{ and pH} = 11.127$$

Strong Acids: HClO₄ H₂SO₄ HI HBr HCl HNO₃

Strong Bases: LiOH NaOH KOH Ca(OH)₂ Sr(OH)₂ Ba(OH)₂

- Polyprotic acids have more than one ionizable proton, such as H_2SO_3 .
- These acids have acid-dissociation constants that decrease in magnitude in the order $K_{a1} > K_{a2} > K_{a3}$.

• Because nearly all the H⁺(aq) in a polyprotic solution comes from the first dissociation, the pH can usually be estimated using only K_{a1} .

A polyprotic acid can donate more than one H⁺ Carbonic acid: $H_2CO_3(aq)$; dissolved CO_2 in water Sulfuric acid: $H_2SO_4(aq)$ Phosphoric acid: $H_3PO_4(aq)$

A polyprotic base: can accept more than one proton Carbonate ion: $CO_3^{2-}(aq)$ Sulfate ion: $SO_4^{2-}(aq)$ Phophate ion: $PO_4^{3-}(aq)$

Treat each step of protonation or deprotonation sequentially

 $H_2CO_3(aq) + H_2O(1) \Leftrightarrow H_3O^+(aq) + HCO_3^-(aq) \qquad K_{a1} = 4.3$ x 10⁻⁷

 $\begin{array}{ll} HCO_{3}^{-}(aq) + H_{2}O(l) \Leftrightarrow H_{3}O^{+}(aq) + CO_{3}^{2-}(aq) & K_{a2} = 4.8 \\ x \ 10^{-11} \end{array}$

Typically:

 $K_{a1} >> K_{a2} >> K_{a3} >> \dots$

Harder to loose a positively charged proton from a negatively charged ion, because of attraction between opposite charges.

TABLE 10.9 Acidity Con	stants of Polyp	orotic Ac	ids			
Acid	K _{a1}	pK _{a1}	K _{a2}	pK _{a2}	K _{a3}	pK _{a3}
sulfuric acid, H ₂ SO ₄	strong		1.2×10^{-2}	1.92		
oxalic acid, (COOH)2	5.9×10^{-2}	1.23	6.5×10^{-5}	4.19		
sulfurous acid, H ₂ SO ₃	1.5×10^{-2}	1.81	1.2×10^{-7}	6.91		
phosphorous acid, H ₃ PO ₃	1.0×10^{-2}	2.00	2.6×10^{-7}	6.59		
phosphoric acid, H ₁ PO ₄	7.6×10^{-3}	2.12	6.2×10^{-8}	7.21	2.1×10^{-13}	12.68
tartaric acid, C ₂ H ₄ O ₂ (COOH) ₂	6.0×10^{-4}	3.22	1.5×10^{-5}	4.82		
carbonic acid, H ₂ CO ₁	4.3×10^{-7}	6.37	5.6×10^{-11}	10.25		
hydrosulfuric acid, H ₂ S	1.3×10^{-7}	6.89	7.1×10^{-15}	14.15		

Calculate the pH of 0.010 M $H_2SO_4(aq)$ at 25°C.

Sulfuric acid is the only common polyprotic acid where the first deprotonation step is complete. The second deprotonation step is much weaker and adds slightly to the $H_3O^+(aq)$ concentration.

For the first step assume all $H_2SO_4(aq)$ deprotonates $H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$

From the first step $[H_3O^+(aq)] = 0.010 \text{ M}$

Second deprotonation

 $\mathrm{HSO_{4^{-}}(aq)} + \mathrm{H_{2}O(l)} \Leftrightarrow \mathrm{H_{3}O^{+}(aq)} + \mathrm{SO_{4^{2^{-}}}(aq)}\mathrm{K_{a2}} = 0.012$

	HSO_4^- (aq)	$SO_4^{2-}(aq)$	H_3O^+ (aq)
Initial	0.010	0	0.010
Change	-X	+ x	0.010 + x
Equilibrium	0.010-x	Х	0.010 + x

 $K_{a2} = ([H_3O^+ (aq)])([SO_4^{2-} (aq)]) / ([HSO_4^{-} (aq)])$

0.012 = (0.010 + x)(x) / (0.010 - x)

Solve the quadratic equation for x. K_{a2} is large; cannot assume that x << 0.010

$$[H_3O^+ (aq)] = 1.4 \times 10^{-2} M$$

pH = 1.9

Determine the pH of 0.20 M H₂S(aq) at 25°C

 $H_2S (aq) + H_2O(1) \Leftrightarrow H_3O^+ (aq) + HS^- (aq) \qquad K_{a1} = 1.3 \text{ x } 10^{-7} \\ HS^- (aq) + H_2O(1) \Leftrightarrow H_3O^+ (aq) + S^{2-} (aq) \qquad K_{a2} = 7.1 \text{ x } 10^{-15}$

For the first deprotonation step determine [H₃O⁺(aq)] using equilibrium tables. [H₃O⁺(aq)] = 1.6 X 10⁻⁴ M
Can assume that x << 0.20 since K_{a1} is small

Second deprotonation constant is very small, so ignore addition of $H_3O^+(aq)$ due to second step.

pH determined by first step alone. pH = 3.8

SALTS AND HYDROLYSIS

1. No hydrolysis: Salts of *strong acids and strong bases* are **neutral** in solution.

(NaCl, K_2SO_4 , CaCl₂....)

Anion-hydrolysis: Salts of weak acids and strong bases are **basic** in solution.

Dissolution: $KCN \rightarrow K^+ + CN^-$ Hydrolysis: $CN^- + H_2O \Leftrightarrow HCN + OH^-$

SALTS AND HYDROLYSIS

. Cation-hydrolysis: Salts of strong acids and weak bases are acidic in solution.

Dissolution: $NH_4Cl \rightarrow NH_4^+ + Cl^-$ Hydrolysis: $NH_4^+ + H_2O \Leftrightarrow NH_3 + H_3O^+$

Cation-anion hydrolysis: Salts of weak acids and weak bases can be acidic, basic or neutral in solution, owing to the hydrolysis of both ions. The reaction depends on relative acid-base strengths.

Dissolution: $NH_4CN \rightarrow NH_4^+ + CN^-$ Cation-Hydrolysis: $NH_4^+ + H_2O \Leftrightarrow NH_3 + H_3O^+$ Anion-hydrolysis: $CN^- + H_2O \Leftrightarrow HCN + OH^-$

SALTS AND HYDROLYSIS

<u>Salts</u> are the ionic product of an acid base neutralization reaction.

Acidic Salts are formed from a strong acid and a weak base.

<u>Neutral salts</u> are formed from a strong acid and strong base.

Basic salts are formed from a strong base and a weak acid. Give the acid and base the following salts were formed from and label the salts as acidic, basic, or neutral. $1 \cdot NaCl$

HCl + NaOH \longrightarrow NaCl + HOH s.b. neutral salt s.a. $NaC_2H_3O_2$ 2. $HC_2H_3O_2 + NaOH \longrightarrow NaC_2H_3O_2 + HOH$ basic salt w.a. s.b. NH₄Cl $NH_4C1 + HOH$ NH_4OH HCl +acidic salt w.h. s.a.

