STEREOISOMERS OR CERBON
 COMPOUNDS

Stereoisomers of Carbon Compounds

Stereochemistry: That part of the science which deals with structure in three dimensions
Isomers: Have same molecular formula, but different structures

Stereoisomers of Carbon Compounds

Chiral compounds: are optically active; they rotate the plane of polarized light.
Achiral compounds: do not rotate the plane of polarized light. They are optically inactive.

Stereoisomers of Carbon Compounds

Stereoisomers of Carbon Compounds

Enamtioners, therefore have clifferent physiolopical responses

Consicler Penicillamine

antiarthritic

正

Short peptide segment

Stereoisomers of Carbon Compounds

Optical Activity

Optically Active: compounds rotate plane polarized light. Chiral compounds (compounds not superimposable on their mirror objects) are expected to be optically active.

- Optically Inactive: compounds do not rotate plane polarized light. Achiral compounds are optically inactive.

Stereoisomers of Carbon Compounds

Summary of Isomerism Concepts

Isomers, contain same atoms, same formula

Constitutional isomers, different connectivities, bonding.

Stereoisomers, same connectivity, different three dimensional orientation of bonds

Enantiomers, mirror objects
Diastereomers, not mirror objects

Stereoisomers of Carbon Compounds

Stereoisomers of Carbon Compounds

Constitutional (Structural) Isomers: same molecular formula, different connectedness

Butane, a four-carbon molecule, is the simple alkane that has two structural isomers.

Ex.

$$
\mathrm{C}_{4} \mathrm{H}_{10} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

isobutane

Stereoisomers of Carbon Compounds

Stereoisomers : compounds with the same

 connectivity, different arrangement in space
trans

eq

Stereoisomers of Carbon Compounds

(2S,3R)-3-bromo-2-butanol

(2R,3S)-3-bromo-2-butanol

(2S,3S)-3-bromo-
2-butanol

(2R,3R)-3-bromo-2-butanol
perspective formulas of the stereoisomers of 3-bromo-2-butanol

(2S,3R)-3-bromo-
2-butanol

(2R,3S)-3-bromo-
2-butanol

(2S,3S)-3-bromo-
2-butanol

(2R,3R)-3-bromo-2-butanol

Fischer projections of the stereoisomers of 3-bromo-2-butanol

Stereoisomers of Carbon Compounds

Conformational isomers: are isomers that are not different compounds because they have different arrangements of the atoms of the compound. They are also known as conformers. Consider butane: The structure of butane can be represented as shown on the next slide.

Stereoisomers of Carbon Compounds

Configuration : the arrangement in space of the four different groups about a chiral center.

Stereoisomers of Carbon Compounds

enantiomers

an achiral molecule

superimposable mirror image
identical molecules

Stereoisomers of Carbon Compounds

Enantiomers : Compounds that are no superimposable mirror images. Any molecule that is chiral must have an enantiomer.
stereoisomers that are non-superimposable mirror images ; only properties that differ are direction (+ or -) of optical rotation

Stereoisomers of Carbon Compounds

- Also called asymmetric carbon atom.
- Carbon atom that is bonded to four different groups is chiral.
- Its mirror image will be a different compound (enantiomer).

Stereoisomers of Carbon Compounds

Diastereomers : stereoisomers that are not mirror images; different compounds with different physical properties.

Stereoisomers of Carbon Compounds

Diastereomers

- Molecules with two or more chiral carbons.
- Stereoisomers that are not mirror images.

CH_{3}	CH_{3}
$\mathrm{H}-\mathrm{Br}$	$\mathrm{Br}-\mathrm{H}$
$\mathrm{H}-\mathrm{Cl}$	$\mathrm{Cl}-\mathrm{H}$
	CH_{3}
$(2 S, 3 R)$	$(2 R, 3 S)$
enantiomers	

CH_{3}	CH_{3}
$\mathrm{H}-\mathrm{Br}$	$\mathrm{Br}-\mathrm{H}$
$\mathrm{Cl}-\mathrm{H}$	$\mathrm{H}-\mathrm{Cl}$
	$\stackrel{\mathrm{C}}{\mathrm{H}} 3$
$(2 S, 3 S)$	($2 R, 3 R$)
enantiomers	

diastereomers

Stereoisomers of Carbon Compounds

(2S,3S) 2-bromo-3-chlorobutane

Diastereomers

(2R,3S) 2-bromo-3-chlorobutane

Stereoisomers of Carbon Compounds

3-chloro-2-butanol

erythro enantiomers

threo enantiomers

trans-1-bromo-3-methylcyclohexane

Stereoisomers of Carbon Compounds

natural alanine

unnatural alanine

Stereoisomers of Carbon Compounds

stereochemistry of the product

a pair of diastereomers

Stereoisomers of Carbon Compounds

OH groups syn

$R, R \& S, S$
Enantiomers

Tartaric acid

OH groups anti

A Not

$R, S=S, R$
meso pair $=$ achiral

Stereoisomers of Carbon Compounds

Meso Compounds with Multiple Stereocenters

Stereoisomers of Carbon Compounds

mirror images

(enantiomers)
mirror images (enantiomers)
non-mirror image (diastereomers)

Stereoisomers of Carbon Compounds

1
For example:

3

4

4

Stereoisomers of Carbon Compounds

Meso compounds: are achiral compounds that has multiple chiral centers. It is superimposed on its mirror image and is optically inactive despite its stereocenters.

meso compounds

Stereoisomers of Carbon Compounds

cis-1,3-dimethylcyclopentane a meso compound

Br Br
cis-1,2-dibromocyclohexane a meso compound

trans-1,3-dimethylcyclopentane a pair of enantiomers

Br H
trans-1,2-dibromocyclohexane a pair of enantiomers

Stereoisomers of Carbon Compounds

Can be superimposed by 180 deg rotation.

(15,2R)-1,2-dimethylcyclohexame

Stereoisomers of Carbon Compounds

trans-but-2-ene
Meso Compounds

cis-1,2-dichlorocyclopentane - 2013 Pamon Estaros ine

cis-1,2-dibromocyclohexane

meso-2,3-dibromobutane

meso-tartaric acid

Stereoisomers of Carbon Compounds

7.11: Achiral Molecules with Two Chirality Centers

meso (achiral)

chiral

Meso: molecules that contain chiral atoms but are achiral because they also possess a plane of symmetry.

Stereoisomers of Carbon Compounds

Polari meter - device that measures the optical

 rotation of the chiral compounddextrorotatory : when the plane of polarized light is rotated in a clockwise direction when viewed through a Polari meter.

$$
(+) \text { or }(d) \quad \text { do not confuse with } \mathrm{D}
$$

levorotatory : when the plane of polarized light is rotated in a counterclockwise direction when viewed through a Polari meter.
$(-)$ or
(1)
do not confuse with L
direction of light propagation

Stereoisomers of Carbon Compounds

Optical Activity

Enantiomers rotate the plane of polarized light in opposite directions, but same number of degrees.

polarizing filter
sample cell
analyzing detector filter

Stereoisomers of Carbon Compounds

Polari meter

Clockwise

Dextrorotatory (+)

Counterclockwise

Levorotatory (-)

Stereoisomers of Carbon Compounds

Specific Rotation

Observed rotation depends on the length of the cell and concentration, as well as the strength of optical activity, temperature, and wavelength of light.

$$
[\alpha]=\frac{\alpha \text { (observed) }}{c \bullet 1}
$$

Where α (observed) is the rotation observed in the Polari meter, c is concentration in g / mL, and l is length of sample cell in decimeters.

Stereoisomers of Carbon Compounds

Specific Rotation, [α]

$$
\begin{gathered}
{[\boldsymbol{\alpha}]=\boldsymbol{\alpha} / \mathbf{c l}} \\
\mathrm{a}=\text { observed rotation } \\
\mathrm{c}=\text { concentration in } \mathrm{g} / \mathrm{mL} \\
\mathrm{l}=\text { length of tube in } \mathrm{dm}
\end{gathered}
$$

Dextrorotary designated as d or (+), clockwise rotation
Levorotary designated as 1 or (-), counter-clockwise rotation

Stereoisomers of Carbon Compounds

Solved Problem

When one of the enantiomers of 2-butanol is placed in a Polari meter, the observed rotation is 4.05° counterclockwise. The solution was made by diluting 6 g of 2-butanol to a total of 40 mL , and the solution was placed into a $200-\mathrm{mm}$ Polari meter tube for the measurement. Determine the specific rotation for this enantiomer of 2butanol.

Stereoisomers of Carbon Compounds

Solution

Since it is levorotatory, this must be (-)-2butanol The concentration is 6 g per $40 \mathrm{~mL}=0.15$ g / mL, and the path length is $200 \mathrm{~mm}=2 \mathrm{dm}$. The specific rotation is

$$
[a]{ }_{\mathrm{D}}^{25}=\frac{-4.05^{\circ}}{(0.15)(2)}=-13.5^{\circ}
$$

Stereoisomers of Carbon Compounds

Solved Problem

A sample of a compound A in chloroform (0.500 g / mL) at $25.0^{\circ} \mathrm{C}$ shows a rotation of $+2.5^{\circ}$ in a 1.0 decimeter cell. What is the specific rotation?
THANK YOU

