Collage of Veterinary

Lecture 13/ Level

Gene Frequency and Evolution

POPULATION GENETICS:

The study of the rules governing the maintenance and transmission of genetic variation in natural populations

DARWINIAN EVOLUTION BY NATURAL SELECTION

- Many more individuals are born than survive (COMPETITION).
- Individuals within species are variable (VARIATION).
- Some of these variations are passed on to offspring (HERITABILITY).
- Survival and reproduction are not random. There must be a correlation between fitness and phenotype.

Mechanisms of Evolution: Mendelian Genetics in Populations

- Genetic variation is the raw material of evolutionary change: how do we measure it?
- What are the forces that cause genetic changes within populations? That is, what mechanisms cause evolutionary change?

Population Genetics

- Evolution can be defined as a change in gene frequencies through time.
- Population genetics tracks the fate, across generations, of Mendelian genes in populations.
- Population genetics is concerned with whether a particular allele or genotype will become more or less common over time.

Assumptions:

- 1) Diploid, autosomal locus with 2 alleles: A and a
- 2) Simple life cycle:

PARENTS	GAMETES	ZYGOTES
(DIPLIOD)	(HAPLOID)	(DIPLOID)

These parents produce a <u>large</u> gamete pool (Gene Pool) containing alleles A and a.

Gamete (allele) Frequencies:

Freq(A) = p Freq(a) = q \Rightarrow p + q = 1

Genotype Frequencies of 3 Possible Zygotes:

AA Aa aa Freq (AA) = $p_A x p_A = {p_A}^2$ Freq (Aa) = $(p_A x q_a) + (q_a x p_A) = 2p_A q_a$ Freq (aa) = $q_a x q_a = {q_a}^2$ $p^2 + 2pq + q^2 = 1$

General Rule for Estimating Allele Frequencies from Genotype Frequencies:

Genotypes:AA Aa aa Frequency: p^2 2pq q^2 \Rightarrow Frequency of the A allele: $p = p^2 + \frac{1}{2}$ (2pq) \Rightarrow Frequency of the a allele: $q = q^2 + \frac{1}{2}$ (2pq)

Sample Calculation: Allele Frequencies

Assume N = 200 indiv. in each of two populations 1 & 2

- Pop 1 : 90 AA 40 Aa 70 aa
- Pop 2 : 45 AA 130 Aa 25 aa

In Pop 1:

• $p = p^2 + \frac{1}{2} (2pq) = \frac{90}{200} + \frac{1}{2} (\frac{40}{200}) = 0.45 + 0.10 = 0.55$

•
$$q = q^2 + \frac{1}{2} (2pq) = \frac{70}{200} + \frac{1}{2} (40/200) = 0.35 + 0.10 = 0.45$$

In Pop 2 :

- $p = p^2 + \frac{1}{2} (2pq) = \frac{45}{200} + \frac{1}{2} (130/200) = 0.225 + 0.325 = 0.55$
- $q = q^2 + \frac{1}{2}(2pq) = \frac{25}{200} + \frac{1}{2}(130/200) = 0.125 + 0.325 = 0.45$

Main Points:

- p + q = 1 (more generally, the sum of the allele frequencies equals one)
- p² + 2pq +q² = 1 (more generally, the sum of the genotype frequencies equals one)
- Two populations with markedly different genotype frequencies can have the same allele frequencies

The Hardy-Castle-Weinberg Law

A single generation of random mating establishes H-W equilibrium genotype frequencies, and neither these frequencies nor the gene frequencies will change in subsequent generations.

H-W ASSUMPTIONS:

- 1. Large population size
 - small populations have fluctuations in allele frequencies (e.g., fire, storm).
- 2. No migration

- immigrants can change the frequency of an allele by bringing in new alleles to a population.

- 3. No net mutations
 - if alleles change from one to another, this will change the frequency of those alleles
- 4. Random mating

- if certain traits are more desirable, then individuals with those traits will be selected and this will not allow for random mixing of alleles.

5. No natural selection

- if some individuals survive and reproduce at a higher rate than others, then their offspring will carry those genes and the frequency will change for the next generation.

IMPLICATIONS OF THE H-W PRINCIPLE:

- A random mating population with no external forces acting on it will reach the equilibrium H W frequencies in a single generation, and these frequencies remain constant there after.
- Any perturbation of the gene frequencies leads to a new equilibrium after random mating.
- The amount of heterozygosity is maximized when the gene frequencies are intermediate.

2pq has a maximum value of 0.5 when

p = q = 0.5

Modern Synthesis Theory

- Combines Darwinian selection and Mendelian inheritance
- Population genetics study of genetic variation within a population
- Emphasis on quantitative characters (height, size ...)
- 1940s comprehensive theory of evolution (Modern Synthesis Theory)
- Introduced by Fisher & Wright
- Until then, many did not accept that Darwin's theory of natural selection could drive evolutionTODAY'S theory on evolution
- Recognizes that GENES are responsible for the inheritance of characteristics
- Recognizes that POPULATIONS, not individuals, evolve due to natural selection & genetic drift
- Recognizes that SPECIATION usually is due to the gradual accumulation of small genetic changes

Microevolution

- Changes occur in gene pools due to mutation, natural selection, genetic drift, etc.
- Gene pool changes cause more VARIATION in individuals in the population
- This process is called MICROEVOLUTION
- Example: Bacteria becoming unaffected by antibiotics (resistant)

Cause of microevolution

Genetic Drift

- the change in the gene pool of a small population due to chance

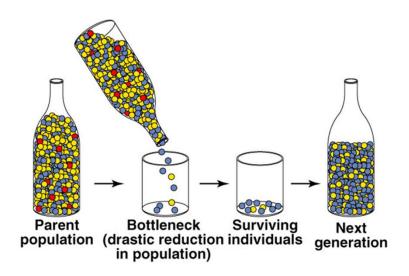
Natural Selection

- success in reproduction based on heritable traits results in selected alleles being passed to relatively more offspring (Darwinian inheritance)

- Cause ADAPTATION of Populations
 - Gene Flow

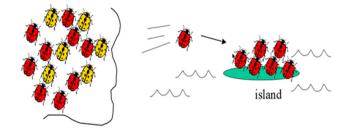
-is genetic exchange due to the migration of fertile individuals or gametes between populations

• The Hardy-Weinberg theorem assumes that no individuals enter a population from the outside and that no individuals leave a population.


• Immigration or emigration upsets the Hardy-Weinberg equilibrium, resulting in changes in allelic frequency (evolution). Changes in relative allelic frequency from the migration of individuals are gene flow.

• The absence of gene flow can make change in the populations population less likely.

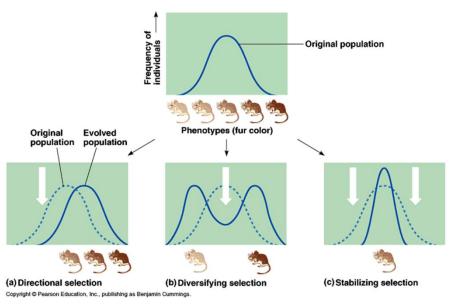
- Mutation
 - a change in an organism's DNA
 - Mutations can be transmitted in gametes to offspring
- Non-random mating
- Mates are chosen on the basis of the best traits


Genetic drift

- Bottleneck Effect
 - a drastic reduction in population (volcanoes, earthquakes, landslides ...)
 - Reduced genetic variation
 - Smaller population may not be able to adapt to new selection pressures

Founder Effect

- occurs when a new colony is started by a few members of the original population
- Reduced genetic variation
- May lead to speciation



Modes of Natural Selection

- Directional Selection
 - Favors individuals at one end of the phenotypic range
 - Most common during times of environmental change or when moving to new habitats

Disruptive selection

- Favors extreme over intermediate phenotypes
- Occurs when environmental change favors an extreme phenotype
- Stabilizing Selection
 - Favors intermediate over extreme phenotypes
 - Reduces variation and maintains the current average
 - Example: Human birth weight

Geographic Variations

- Variation in a species due to climate or another geographical condition
- Populations live in different locations
- Example: Finches of Galapagos Islands & South America

Other Sources of Variation

- Mutations
 - In stable environments, mutations often result in little or no benefit to an organism, or are often harmful
 - Mutations are more beneficial (rare) in changing

environments (Example: HIV resistance to antiviral drugs)

- Genetic Recombination
 - source of most genetic differences between individuals in a population
- Co-evolution
 - Often occurs between parasite & host and flowers & their pollinators

Dr. Naer ALkaabi