TOXICANTS OF PUBLIC HEALTH HAZARD

A-Pesticides: are chemicals (any substance or mixture of substances) are used to preventing, destroying and kill pests.

pests can be insects, weeds, fungi, rodents or other unwanted organisms.

Pesticide can be divided into several groups, such as

- 1- Insecticides: target harmful or destructive insects like: DDT, BHC.
- 2-Herbicides: target weeds like: Borax, Nitrofen.
- 3-Fungicides : target fungi like: Bordeaux mixture
- 4-Rodenticides : target rodents like: Warfarin, Zinc phosphide ■
- 5-Nematocide: target nematodes like: DBCP, Phorate:
- 6-Molluscicides: target molluscan like:Sodium pentachloridephenate
- *Basic classes of insecticides:
- 1-Organochlorines (chlorinated hydrocarbons)
- 2- Organophosphates (organophosphorus compounds)
- 3-Carbametes esters 4-Pyrethroids

*Botanical insecticides

The basic mechanism of action for most pesticides can be summarized as:

#An alteration of signal along nerve fiber / from one nerve to another

#Across the synapse / from a nerve to muscle fiber

1- Organochlorines insecticides: are organic compounds with chlorine (Cl) atoms attached to the ring structures.

There are three major classes of organochlorines:

- a)- dichlorodiphenylethanes : as DDT, methoxychlor
- b)-cyclodines: as aldrin, dialdrin, chlordine, endosulfan
- c)-chlorinated benzenes cyclohexanes or hexachlorecyclohexanes) as lindane
- 2-Organophosphates (organophosphorus compounds OPC)

Mechanism of action: Inhibit acetylcholinesterase (ACHE) irreversibly *in nerve* cells.

OPC: are insecticides that have the active part which phosphate group sharing a double bond with either an oxygen or a sulfur group.

OPC can be categorized in two broad groups on the basis of their activity:

- a)- direct acting organophosphate: they act by directly inhibiting the cholinesterase enzyme. ex: dichorvos, diazinon, dimethoate, sarin.
- b)-indirectly action organophosphate: they inactive but are biotransformed in the body to toxic metabolites which inhibit cholinesterase enzyme. e.g: malathion active metabolites malaoxon, parathion active metabolites paraoxon.

ACh Esterase

Organophosphate pesticide (OP)

ACh Esterase STOPS signaling process **OP's inhibit ACh Esterase** Acetylcholine signaling at synapse pre-synaptic neuron (pre-synaptic neuron (pre-synaptic neuron (post-synaptic neuron or muscle cell post-synaptic neuron or muscle cell post-synaptic neuron ACh Acetylcholine (ACh) ACh ACh Receptor **ACh Receptor** ACh Receptor Signal transmission Signal transmission Signal transmission

Effect of OPonthe AChE

Signs and symptoms of organophosphate poisoning can be divided into 3 broad categories, including (1) muscarinic effects, (2) nicotinic effects, and (3) CNS effect

ACh Esterase

* signs & symptoms of organophosphate toxicity

Nervous tissue and receptor	Organ affected	manifestations
affected		
	1- Exocrine gland	-Increase salivation &
Parasympathetic	2- Eye	lacrimation
postganglionic nerve	3- GIT	-miosis , blurring vision ,
fibers(muscarinic receptors)	4- Respiratory tract	conjunctive congestion,
		bloody tears
		- nausea, vomiting, diarrhea

		, fecal incontinence
Somatic motor nerve	Skeletal muscle	-muscle fasciculation
fibers(nicotinic receptors)		-diminished tendon reflexes
		-generalized muscle
		Weakness in peripheral and
		respiratory muscle
		-paralysis , ataxia
Brain	Central nervous system	Drowsines
(ACHreceptors)(muscarinic		fatigue
receptors)		lethargy
		tremers
		-coma with absence of
		reflexes
		-convulsions
		-depressions of respiratory
		centers, cyanosis.

Treatment of organophosphates toxicity:

Aim of treatment: treatment of organophosphates poisoning in an domestic & wild animals should be aimed at:

- 1)- abolish the muscarinic effects due to excess of acetylcholine.
- 2)-to regenerate the inactivated enzyme.

*Lines of treatment:

- 1) the first line of treatment consist of the administration of atropine sulphate at the dose rate of 0.2-0.5mg/Kg B.W (one fourth of the dose is given IV and three fourth IM or SC as 0.15% in normal saline.
- 2) second line of treatment consist of the using of cholinesterase reactivator (oxime reactivator) such as (2-PAM , pralidoxime) at the dose rate of 30 mg/Kg B.W I.V or I.M as 6% solution in normal saline.